Geometry Qualifying Exam

Michigan State University - August 2019

Instructions. Solve any 5 of the following 6 problems. Show clearly which 5 problems you want graded. You must justify your claims either by direct arguments or by referring to specific theorems.

All manifolds, functions, vector fields, etc. are assumed to be smooth.

Problem 1. Let S denote the unit sphere in \mathbb{R}^n .

- (a) Describe the tangent bundle TS as a subset of \mathbb{R}^{2n} .
- (b) Using (a), prove that TS is a submanifold of \mathbb{R}^{2n} .
- (c) Using (a), show that $\pi: TS \to S$ is a vector bundle.

Problem 2. Let ω be a 1-form on a manifold M, and let Vect(M) denote the space of all smooth vector fields on M. Define

$$\eta: \operatorname{Vect}(M) \times \operatorname{Vect}(M) \to C^{\infty}(M)$$

by

$$\eta(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y]) \tag{1}$$

for all vector fields X, Y on M. Prove that $\eta = d\omega$ as follows:

- (a) Show that η is bilinear and skew-symmetric in X and Y.
- (b) Show that $\eta(fX,Y) = f\eta(X,Y)$ for all $f \in C^{\infty}(M)$.

Note: Together, (a) and (b) imply that η is a 2-form.

- (c) Prove that $d\omega(X,Y) = \eta(X,Y)$ in the case where X and Y are basis vector fields $\frac{\partial}{\partial x^i}$ in a local coordinates $\{x^i\}$.
- (c) Explain why (c) implies that $\eta = d\omega$.

Problem 3. Let G be a Lie group. For each $g \in G$, let $L_g : G \to G$ be left multiplication by g (defined by $L_g(h) = gh$ for all $h \in G$) and set

$$\mathfrak{g} = \{ \text{ all left-invariant vector fields on } G \}.$$

- (a) Show that g is a vector space.
- (b) Prove that there is a isomorphism $\mathfrak{g} \cong T_eG$, where T_eG is the tangent space at the identity element $e \in G$.

Problem 4. Let ω be a smooth 1-form on a manifold M such that $\int_C \omega = 0$ for every sufficiently small closed curve C (i.e. every closed curve of length less that some fixed ε). Prove that ω is closed.

Hint: Suppose that $(d\omega)(p) \neq 0$ at some $p \in M$.

Problem 5. Consider the map $f: S^2 \to \mathbb{R}^6$ defined on the unit sphere $S^2 \subset \mathbb{R}^3$ by

$$f(x,y,z) = (x^2, y^2, z^2, \sqrt{2}yz, \sqrt{2}xz, \sqrt{2}xy).$$

- (a) Write down the differential Df as a matrix.
- (b) Prove that f is an immersion.
- (c) Prove that f is *locally* an embedding.
- (d) Show that f is not injective. Relate this to \mathbb{RP}^2 .

Problem 6. Compute $\int_M \alpha$ where α is the 2-form

$$\alpha = 3x^2 dx \wedge dy + x^2 (3y^2 + 1) dy \wedge dz + 2xy dx \wedge dz$$

and M is the ellipsoidal surface

$$M = \left\{ (x, y, z) \in \mathbb{R}^3 \,\middle|\, x^2 + y^2 + 4z^2 = 1 \right\}$$

with the "outward normal' orientation.

Hints: (i) Simplify the integral by noting that $\alpha = \beta + d\gamma$ where $\gamma = x^3 dy + x^2 y dz$.

(ii) Then parameterize the upper half M^+ of M as a graph over the unit disk in the (x,y)-plane, and use polar coordinates.